Pular para o conteúdo

Theory

Este conteúdo não está disponível em sua língua ainda.

This section presents the theoretical foundations on which the program is based. The concepts, assumptions, and formulations used in the different analysis methods implemented are explained.

The content is aimed at providing a clear understanding of how the calculation is performed within the software, facilitating both the interpretation of results and the technical validation of the models.

The general bearing capacity equation by Meyerhof is expressed as:

qu=cNcFcsFcdFci+γqNqFqsFqdFqi+0.5γBNγFγsFγdFγiq_{u} = c' N_c F_{cs} F_{cd} F_{ci} + \gamma q' N_q F_{qs} F_{qd} F_{qi} + 0.5 \gamma B N_\gamma F_{\gamma s} F_{\gamma d} F_{\gamma i}

Where:

  • q_uq\_{u}: Ultimate bearing capacity (kN/m2\text{kN/m}^2).
  • cc': Effective soil cohesion (kN/m^2^).
  • qq': Effective stress at the foundation base (kN/m2\text{kN/m}^2).
  • γ\gamma: Unit weight of soil (kN/m3\text{kN/m}^3).
  • BB: Width of foundation (m\text{m}).
  • NcN_c, NqN_q, NγN_\gamma : Bearing capacity factors (dimensionless).
  • FcsF_{cs}, FqsF_{qs}, FγsF_{\gamma s}: Shape factors (dimensionless).
  • Fcd,Fqd,FγdF_{cd}, F_{qd}, F_{\gamma d}: Depth factors (dimensionless).
  • Fci,Fqi,FγiF_{ci}, F_{qi}, F_{\gamma i}: Inclination factors (dimensionless).

The bearing capacity factors are defined as:

Nq=tan2(45°+ϕ2)eπtanϕN_q = \tan^2 \left( 45° + \frac{\phi'}{2}\right) e^{\pi \tan \phi'} Nc=(Nq1)cotϕN_c = (N_q-1) \cot \phi' Nγ=2(Nq+1)tanϕN_\gamma = 2 (N_q + 1) \tan \phi'

Shape factors:

Fcs=1+(BL)(NqNc)F_{cs} = 1 + \left(\frac{B}{L}\right)\left(\frac{N_q}{N_c}\right) Fqs=1+(BL)tanϕF_{qs} = 1 + \left(\frac{B}{L}\right)\tan \phi' Fγs=10.4(BL)F_{\gamma s} = 1 - 0.4 \left(\frac{B}{L}\right)

Depth factors:

Case 1: DfB1\frac{D_f}{B} \leq 1 and ϕ=0\phi' = 0 :

Fcd=1+0.4(DfB)F_{cd} = 1 + 0.4 \left(\frac{D_f}{B}\right) Fqd=1F_{qd} = 1 Fγd=1F_{\gamma d} = 1

Case 2: DfB1\frac{D_f}{B} \leq 1 and ϕ>0\phi' > 0 :

Fcd=Fqd1FqdNctanϕF_{cd} = F_{qd} - \frac{1-F_{qd}}{N_c \tan \phi'} Fqd=1+2tanϕ(1sinϕ)2(DfB)F_{qd} = 1 + 2 \tan \phi' (1- \sin \phi')^2 \left( \frac{D_f}{B} \right) Fγd=1F_{\gamma d} = 1

Case 3: DfB>1\frac{D_f}{B} > 1 and ϕ=0\phi' = 0 :

Fcd=1+0.4tan1(DfB)F_{cd} = 1 + 0.4 \tan^{-1}\left(\frac{D_f}{B}\right) Fqd=1F_{qd} = 1 Fγd=1F_{\gamma d} = 1

Case 4: DfB>1\frac{D_f}{B} > 1 and ϕ>0\phi' > 0 :

Fcd=Fqd1FqdNctanϕF_{cd} = F_{qd} - \frac{1-F_{qd}}{N_c \tan \phi'} Fqd=1+2tanϕ(1sinϕ)2tan1(DfB)F_{qd} = 1 + 2 \tan \phi' (1- \sin \phi')^2 \tan^{-1}\left( \frac{D_f}{B} \right) Fγd=1F_{\gamma d} = 1

Inclination factors:

Fci=Fqi=(1β°90°)2F_{ci} = F_{qi} = \left( 1 - \frac{\beta°}{90°} \right)^2 Fγi=(1β°ϕ)2F_{\gamma i} = \left( 1 - \frac{\beta°}{\phi'} \right)^2

The influence of the water table on bearing capacity implies modifying the calculation of the parameters γ\gamma and qq in Meyerhof’s General Bearing Capacity Equation. These modifications depend on the saturation condition:

Saturated case DwDfD_w \leq D_f :

γ=γ=γsatγw\gamma = \gamma' = \gamma_{sat} - \gamma_w q=Dwγ+(DfDw)(γsatγw)q = D_w \gamma + (D_f-D_w) (\gamma_{sat} - \gamma_w)

Where:

  • γsat\gamma_{sat}: Saturated unit weight of soil (kN/m3\text{kN/m}^3).
  • γw\gamma_{w}: Unit weight of water (kN/m3\text{kN/m}^3).

Partially saturated case Df<DwDf+BDf < D_w \leq D_f + B :

γˉ=γ+DwDfB(γγ)\bar{\gamma} = \gamma' + \frac{D_w - Df}{B} (\gamma - \gamma') q=γDfq = \gamma D_f

Dry case Dw>Df+BD_w > D_f + B :

γ=γ\gamma = \gamma q=γDfq = \gamma D_f

Eccentric loads modify the load application area. This calculation is carried out using the Effective Area Method.

First, the maximum and minimum pressure at the foundation base must be calculated:

e=MQe = \frac{M}{Q} qmax=QBL(1+6eB)q_{max} = \frac{Q}{BL} \left(1+\frac{6e}{B}\right) qmin=QBL(16eB)q_{min} = \frac{Q}{BL} \left(1-\frac{6e}{B}\right)

Where:

  • QQ: Total vertical load (kN\text{kN}).
  • MM: Acting moment on the foundation (kN m\text{kN m}).

The load eccentricity must not exceed e>B/6e > B/6 since from this value, q_minq\_{min} becomes negative and a gap will occur between the plate and the soil.

The safety factor is evaluated as:

FS=QuQFS = \frac{Q_u}{Q}

Where:

  • QuQ_u: Bearing capacity (kN\text{kN}).
  • QQ: Applied vertical load (kN\text{kN}).

To compute the bearing capacity QuQ_u, Meyerhof suggests using the following effective dimensions in the General Bearing Capacity Equation:

B=effective width=B2eB' = \text{effective width} = B - 2 e L=effective length=LL' = \text{effective length} = L

This modifies the bearing capacity equation:

qu=cNcFcsFcdFci+γqNqFqsFqdFqi+0.5γBNγFγsFγdFγiq'_{u} = c' N_c F_{cs} F_{cd} F_{ci} + \gamma q' N_q F_{qs} F_{qd} F_{qi} + 0.5 \gamma B' N_\gamma F_{\gamma s} F_{\gamma d} F_{\gamma i}

To calculate the factors FcsF_{cs}, FqsF_{qs} and FγsF_{\gamma s}, replace the values of BB and LL with BB' and LL' respectively.

However, FcdF_{cd}, FqdF_{qd} and FγdF_{\gamma d} should still be calculated with BB and LL, not BB' and LL'.

Also, the load application area must be changed to the effective area:

A=BLA' = B' L'

Therefore:

Qu=quAQ_u = q'_u A'

This method is based on elasticity theory. Elastic settlement (SeS_e) is calculated with the following equation:

Se=qBE(1μ2)IsIfS_e = \frac{qB}{E} (1 - \mu^2) I_s I_f

Where:

  • SeS_e: Elastic settlement (m\text{m}).
  • qq: Load applied by the foundation (kN/m2\text{kN/m}^2).
  • BB: Foundation width (m\text{m}).
  • μ\mu: Poisson’s ratio of soil (dimensionless).
  • EE: Elastic modulus of soil (kN/m2\text{kN/m}^2).
  • IsI_s: Influence factor depending on rigid layer depth (dimensionless).
  • IfI_f: Influence factor depending on foundation depth (dimensionless).

When a rigid layer underlies the soil, an influence factor (IsI_s) must be considered to reduce the calculated settlement.

Is=F1+12μs1μsF2I_s = F_1 + \frac{1-2 \mu_s}{1-\mu_s} F_2

Where:

F1=1π(A0+A1)F_1 = \frac{1}{\pi}(A_0 + A_1) F2=n2πtan1A2F_2 = \frac{n'}{2 \pi}\tan^{-1} A_2

With A0A_0, A1A_1 and A2A_2 being:

A0=mln(1+m2+1)m2+n2m(1+m2+n2+1)A_0 = m' \ln \frac{\left(1+\sqrt{m'^2+1}\right) \sqrt{m'^2+n'^2}}{m' \left( 1+\sqrt{m'^2+n'^2+1} \right)} A1=ln(m+m2+1)1+n2(m+m2+n2+1)A_1 = \ln \frac{\left(m'+\sqrt{m'^2+1}\right) \sqrt{1+n'^2}}{\left(m'+\sqrt{m'^2+n'^2+1} \right)} A2=mn+m2+n2+1A_2 = \frac{m'}{n' + \sqrt{m'^2+n'^2+1}}

And finally:

m=LBm' = \frac{L}{B} n=HBn' = \frac{H}{B}

Where:

  • LL: Foundation length.
  • BB: Foundation width.
  • HH: Depth to the rigid layer.

The influence factor IfI_f depends on the depth of the foundation:

If=11+(DfB)2I_f = \frac{1}{1 + \left(\frac{D_f}{B}\right)^2}

Where:

  • DfD_f: Depth of the foundation.
  • BB: Width of the foundation.

When there is more than one soil layer, the weighted average of the elastic modulus of the soil deposits must be calculated:

Es=Es(i)ΔzzˉE_s = \frac{\sum E_{s(i)}\Delta z}{\bar z}

Where:

  • EsE_s: average elastic modulus.
  • Es(i)E_{s(i)}: elastic modulus for a layer of thickness Δz\Delta z.
  • zˉ\bar z: the lesser value between HH and 5B5 B.
  • Das, B. M., & Sivakugan, N. (2018). Principles of Foundation Engineering.